Multi-view hypergraph learning by patch alignment framework

نویسندگان

  • Chaoqun Hong
  • Jun Yu
  • Jonathan Li
  • Xuhui Chen
چکیده

Graph-based methods are currently popular for dimensionality reduction. However, most of them suffer from over-simplified assumption of pairwise relationships among data. Especially for multi-view data, different relationships from different views are hard to be integrated into a single graph. In this paper, we propose a novel semi-supervised dimensionality reduction method for multi-view data. First, framework. Second, the weights of the hyperedges are computed with statistics of distances between neighboring pairs and the patches from different views are integrated. In this way, we construct Multiview Hypergraph Laplacian matrix and we get the dimensionality-reduced data by solving the standard eigen-decomposition to obtain the projection matrix. The experimental results demonstrate the effectiveness of the proposed method on retrieval performance. & 2013 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vertex-Weighted Hypergraph Learning for Multi-View Object Classification

3D object classification with multi-view representation has become very popular, thanks to the progress on computer techniques and graphic hardware, and attracted much research attention in recent years. Regarding this task, there are mainly two challenging issues, i.e., the complex correlation among multiple views and the possible imbalance data issue. In this work, we propose to employ the hy...

متن کامل

Analysis of Classification Algorithm on Hypergraph

Classification learning problem on hypergraph is an extension of multi-label classification problem on normal graph, which divides vertices on hypergraph into several classes. In this paper, we focus on the semi-supervised learning framework, and give theoretic analysis for spectral based hypergraph vertex classification semi-supervised learning algorithm. The generalization bound for such algo...

متن کامل

Extended Discriminative Random Walk: A Hypergraph Approach to Multi-View Multi-Relational Transductive Learning

Transductive inference on graphs has been garnering increasing attention due to the connected nature of many real-life data sources, such as online social media and biological data (protein-protein interaction network, gene networks, etc.). Typically relational information in the data is encoded as edges in a graph but often it is important to model multi-way interactions, such as in collaborat...

متن کامل

Urban Water Quality Prediction Based on Multi-Task Multi-View Learning

Urban water quality is of great importance to our daily lives. Prediction of urban water quality help control water pollution and protect human health. In this work, we forecast the water quality of a station over the next few hours, using a multitask multi-view learning method to fuse multiple datasets from different domains. In particular, our learning model comprises two alignments. The firs...

متن کامل

Multi-View Representation Learning: A Survey from Shallow Methods to Deep Methods

Recently, multi-view representation learning has become a rapidly growing direction in machine learning and data mining areas. This paper first reviews the root methods and theories on multi-view representation learning, especially on canonical correlation analysis (CCA) and its several extensions. And then we investigate the advancement of multi-view representation learning that ranges from sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 118  شماره 

صفحات  -

تاریخ انتشار 2013